MAT 534 FALL 2015 REVIEW FOR MIDTERM I

General

The exam will be in class on Thursday, October 1. It will consist of 5 problems and will be a closed book exam on group theory, covering section 1)-10) below.

MATERIAL COVERED IN CLASS

1) Basic group theory: groups, homomorphisms, subgroups, cyclic groups. For any $S \subseteq G$ the normalizer $N_G(S)$ and the centralizer $C_G(S)$ of S in G are subgroups of G and $Z(G) = C_G(G)$ is the center of G. Cosets and quotient spaces, Lagrange's Theorem: if G is a finite group and $H \leq G$, then

$$|G| = |G:H||H|$$
, where $|G:H| = |G/H|$.

2) Normal subgroups, $N \leq G$ iff $N_G(N) = G$, quotient groups G/N and canonical homomorphism

$$\pi_N: G \to G/N, \quad \ker \pi_N = N.$$

The isomorphism theorems.

- 3) Direct and semi-direct products. Isomorphism criterion for semi-direct products: $N \rtimes_{\varphi_1} K \cong N \rtimes_{\varphi_2} K$ if there is $f \in \operatorname{Aut}(K)$ such that $\varphi_2 = \varphi_1 \circ f$. The recognition theorem: if $N, K \trianglelefteq G$ and $N \cap K = \{1\}$, then $HK \cong H \times K$.
- 4) Symmetric and alternating groups.
- 5) Definition and examples of simple, solvable and nilpotent groups.
- 6) Group actions, orbits and stabilizers. Orbit decomposition

$$A = \bigcup_{i \in I} \mathcal{O}_{a_i}$$

— disjoint union, where \mathcal{O}_{a_i} are orbits of a *G*-action on *A*. The counting formula for finite group *G*:

$$|\mathcal{O}_a| = |G:G_a|,$$

where $\mathcal{O}_a = G \cdot a$ is the orbit of $a \in A$ and G_a is the stabilizer of $a \in A$. Orbit decomposition formula: if $|A| < \infty$,

$$|A| = \sum_{i \in I} |G: G_{a_i}|.$$

MAT 534 FALL 2015 REVIEW FOR MIDTERM I

- 7) Action of G on G by left multiplication (the left regular action), action of G on cosets G/H and on the subsets of G.
- 8) Action of G on G by conjugation, orbit \mathcal{O}_g is the set of conjugacy classes of $g \in G$, $G_g = C_G(g)$ (the case when $S = \{g\}$). Action of G by conjugations on the set of subsets of $S \subseteq G$, $G_S = N_G(S)$, normal subgroups as the fixed points of this action. The class equation

$$|G| = |Z(G)| + \sum_{i=1}^{r} |G: C_G(g_i)|,$$

where g_1, \ldots, g_r are representatives of all conjugacy classes in G that are not in Z(G).

- 9) Solvability of *p*-groups. Fixed point theorem for *p*-groups: if a *p*-group *P* acts on *A* and (p, |A|) = 1, then there is a fixed point.
- 10) Sylow's theorems and classification of groups of small orders, of order pq with p < q, basic examples.
- 11) Free and torsion abelian groups, rank. The elementary divisor decomposition of a finite abelian group and the primary divisor decomposition of a finite abelian *p*-group. The main theorem for finitely generated abelian groups.
- 12) Free groups with n generators, free products of groups.

 $\mathbf{2}$